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SUMMARY 
The driving force of a yacht with fin-keel is investigated within the framework of linearized theory. Some 
configurations to represent fin plus hull are discussed. The driving force produced by a yacht of which the 
underwater ship has optimum circulation distribution is compared with the driving force produced when the 
underwater ship has a given planform. In both cases the circulation distribution of the sails is optimized. 

1. Introduction 

Various authors have described and optimized the action of the sails of a yacht while sailing 
to windward by considering them as rigid lifting surfaces (e.g. [1], [2], [3]). The water 
surface is considered to be rigid and flat (zero Froude number). Usually the incoming flow is 
assumed to have a uniform velocity, however, Milgram [2] approximately took into 
account the velocity gradient in the boundary layer (near the earth). The flow in which the 
fin, which under normal sailing conditions always has a small angle of attack, is working 
seems to be much more complicated. Because the fin terminates at the hull whereas the sails 
usually do not, the interaction between fin and hull is greater than between sails and hull. De 
Saix [4] was probably the first to investigate the fin-hull interaction experimentally. 
Mathematical models with sufficient physical validity are necessarily very complicated and 
often not accessible to analytical treatment or optimization. Letcher [5] made calculations 
for hull and keel of the 5.5-meter yacht Antiope assuming a rigid and flat water surface. He 

used several models to calculate the action of the underwater ship. He considered first the 
keel alone as a lifting line, and secondly the whole underwater part as a low-aspect-ratio 
wing. In the third place he used an approach described by Newman and Wu [6] which 
considers the underwater ship as the combination of a slender body of revolution 

connected with a slender wing. In [7], the optimum hydrodynamic action of hull plus keel is 
calculated using a lifting line terminating at the water surface, again for zero Froude 
number. 

In this note we also assume a water surface which is rigid and flat, hoping that for the 
calculation of sideforce, heeling moment and induced drag this is not too crude. Maybe the 
best way to describe the action of the hull is one which is also used for large-hub propellers 

(see e.g. [9]). The hull causes the basic flow of O(e °) in which a lifting surface (the fin) 
produces disturbances of O(e) (e is the small linearization parameter). Here, however, we 
consider the hull as a lifting surface obtained by extending the fin to the water surface in one 
way or another. In Section 4 some configurations are described. Section 5 compares fin-hull 
combinations of given planform with a combination which would give optimum circulation 
distribution. In all the cases the circulation distribution of the sails is optimized. 
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The reason for just investigating the effectiveness of optimizing the underwater ship is the 
expectation that there will not be much difference between a "regular" and an optimum one. 
The graphs of the circulation distributions of symmetrical wings show a form not unlike 
those of the optimum ones (see [7]). Furthermore there is the practical fact that it is much 
more difficult to optimize the shape of a hull than that of sails. 

2. Statement of the problem 

We consider a right-handed Cartesian coordinate-system (X, Y, Z) which is fixed to the 
yacht. The X-axis is parallel to the direction of the undisturbed water velocity V. The 
centreline of the yacht makes a small angle 7 (which is O(e), where e is the small linearization 
parameter) with the X-axis. The plane Z = 0 represents the undisturbed water surface, the 
region Z > 0 the air, Z < 0 the water (Fig. 2.1). 

/ 

Fig. 2.1. Geometry of the problem. 

,7 

/ 
The air has a uniform velocity U parallel to the plane Z -- 0 and makes an angle ct (also O(e)) 
with the X-axis. The yacht will be heeled over an angle ft. Without loss of generality the sails 
can be represented by one lifting line. They will have optimum circulation distribution. 

Now we want to compute the driving force in a direction which makes an angle of O(e) 
with the X-axis, under the constraints of zero sideforce and zero resultant moment around 
the X-axis. This moment is caused by the heeling moment of sails and underwater ship and 
the righting moment of the yacht. In [7] it has been shown that the driving force is the same 
(up to and including O(e2)) in any direction which makes an angle of O(e) with the X-axis. 
This is a consequence of the sideforces of sails and underwater ship being equal in 
magnitude. 

First we consider the case that the geometry of fin and hull is given. For every angle of 
heel we can calculate lift, moment and induced drag of this combination. This is done by 
means of lifting-surface theory. The planform by which the underwater ship is represented 
will in general not yield an optimum circulation distribution. The circulation distribution of 
the sails is determined such that the conditions for sideforce and moment are fulfilled while 
their induced drag has its minimum value under the imposed constraints. Then the angle of 
heel which corresponds with maximum driving force is calculated. 
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Next both the circulation distribution of sails and underwater ship is optimized. Then the 
fin-hull combination can also be represented by a lifting line which terminates at the water 
surface. Again the angle of heel corresponding with maximum driving force is calculated. 

We remark that in this problem two linearizations play a role. First we assume that the 
deviations of sails and fin from surfaces which do not disturb the fluid are small. This allows 
us to use linearized lifting-surface theory and in the optimization problem lifting-line 
representation. In the second place the angle between the yacht's course and the apparent 
wind is small. Therefore we may represent the sails by one lifting line. In both cases the same 
linearization parameter e is used. 

3. Some necessary formulae 

In [7] the case is considered that both sails and underwater ship have optimum circulation 
distribution. Here we recapitulate the necessary formulae and notations. 

Consider a lifting line of length l placed in the plane X = 0 of a right-handed Cartesian 
coordinate system (X, Y, Z) (Fig. 3.1). It is heeled over an angle fl and there may exist a gap, 
defined as the distance between the origin and the line segment. 

I 
Z 

Fig. 3.1. Lifting line and positive direction of forces and moment. 

The fluid (incompressible, nonviscous) with density p has a uniform velocity U which is 
parallel to the X-axis. At the plane Z = 0 we have the boundary condition of tangential flow. 
We prescribe the sideforce F and heeling moment M around the X-axis up to and including 
O(e) (Fig. 3.1): 

F = - f l l P U 2 1 2  COS 2 flllo, M = -fl2pU213 COS f l l l r  (3.1) 

The quantities Iij (i = 1, 2; j = 0, 1) are functionals of solutions of boundary-value pro- 
blems. They are described in [7],. and are functions of heeling angle fl and gap. 

From (3.1) the factors Pl and #2 can be computed when F and M are given. The minimum 
induced resistance is now: 

R i = ½PUEl 2 cos 2 f l ~ - ~ 2 I l o I 2 1  - 2#1#2121 + P22121), (3.2) 
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where D = 121 -110121.  We observe that R i is a quadratic function of the prescribed 
sideforce and moment.  

The driving force T in a direction which makes an angle 5 of O(e) with the X-axis is (up to 
and including O(e2)): 

T(e 2) = 5F - Ri. (3.3) 

These formulae are now applied to the case of two coupled lifting lines, one representing the 

sails, the other one fin plus hull. The velocity of the air is U, that of the water V, and the angle 

between U and V is ot (Fig. 2.1). Quantities belonging to the air are given a superscript a, and 

for the water we use a superscript w. The balance relations for sideforce and moment  are 

a 2 a2ra 
/ z lp  U 1 11o = vlpwV21~2I~o , 

v2paU21 a3 COS fl I~l + fl2pwV21 w3 cos fl I~l + pwVElW3m(fl) = O, 
(3.4) 

where m(fl) is the non-dimensional righting moment  of the yacht, and v I and v 2 play the 

same role for the underwater ship as #1 and P2 do for the sails. Now Pl and #2 can be 
expressed in v 1 and v 2 and inserted in the formula for the thrust: 

T = ~F a - -  R~ - R'~. (3.5) 

T still is a function of v 1 and i~ 2 and can be optimized with respect to these parameters 
(which means that we vary sideforce and heeling moment  until we find the maximum 

thrust). The opt imum thrust becomes 

Top t = -½PWVElW:[kl(m(f l))2 + k2ct cos f lm(f l )  + k3 ~2 COS 2 fl'] (3.6) 

where the quantities k i are given in [7]. They still are functions of heeling angle and gap. 

4. The representation of the hull 

In this section some configurations for the calculation of sideforce, heeling moment  and 

induced drag produced by the hull are described. The fin is considered as an infinitesimally 

thin lifting surface. It is extended to the water surface in one way or another in order to 
represent the hull. The hull we consider here has a waterline length of 7 m and a depth of 
0.5 m. Two fins, A and B, are attached separately to this hull. Both fins have a span of 1.2 m 

and a mean cord of 1.2 m. Hence they have the same lateral area (Figs. 4.1a and 4.1b). 

Fin A has a taper ratio ( = tip cord/root cord) of 0.27 and the sweep angle A of its quarter- 
cord line is 29 °. Fin B has a taper ratio of 0.86 and sweep angle A of 35°. • 

Two hull representations are used for the hull coupled with fin A: 
I. a rectangle whose long side is the root cord of fin A, 

II. a trapezoid, obtained by approximating the projection of the hull on its centre plane. 
The hull coupled with fin B has three representations, two of which are the same as for fin A. 

A third one is added because it is sometimes used in sideforce calculations: 
III. a trapezoid whose oblique sides are obtained by extending the leading and trailing edge 

of the fin to the water surface. 
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t i 

Fig. 4.1. Th e  fin A and  B and  the distinct hull  representat ions .  

- : repr. I, : repr. II, - . . . . . . .  : repr. III. 

• / 

In the following we shall write AI if we mean fin A coupled with hull representation I, and 
analogously AII, B I, B II and B III. 
Since by assumption the water surface is rigid and flat, the boundary condition there (i.e. 
zero normal velocity) is satisfied by considering the fin-hull combination together with its 
reflection in the water surface. The resulting boundary-value problem is solved with the 
Vortex-Lattice Method (described e.g. in [8]). Theoretically it gives us lift L and moment M 
(around the intersection of lifting surface and water surface) accurate up to and including 
O(e). Lift is defined as the force normal to the undisturbed flow. Now we are interested in the 
driving force T which is of O(e 2) in the case of sailing close to wind. Therefore we have to 
know up to and including O ( g  2) how far the total hydrodynamic force is "bent backwards" 
(Fig. 4.2). Hence we calculate the kinetic energy left behind per unit of time by the free vortex 
sheet. The component Ri of the hydrodynamic force in the direction of the undisturbed 
water velocity V is now this energy divided by V. 

We define lift-, moment- and drag coefficient (C~, C m and Ca, respectively) as: 

L M R i 
C t -- ½PV212 ~ , C m ½PV2137, C a ½PV21272, ( 4 . 2 )  

where p is the density of the fluid, I is the depth of the fin and 7 its angle of incidence. Lengths 
belonging to the underwater ship are nondimensionalized by the depth of the fin I because 
when optimizing the circulation distribution this is the relevant parameter. We remark that 
these coefficients still are functions of heeling angle ft. 

The driving force T in a direction which makes an angle ~ (of O(e)) with the hydrofoil is 

T =  L(~ + 7) - R, = ½pV212{(Ct - Ca)72 + Ct~7). (4.3) 

L 

Fig. 4.2. Cross  sect ion on a lifting surface and  the h y d r o d y n a m i c  forces act ing on  it. 
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~q 
~q-CD 

~ C L  

Fig. 4.3. C~-C d and C 1 for the different fin-hull representations. 

. . . .  : repr. I, : repr. I I , -  . . . . . . .  : repr. I lL 

Hence the important quantities for the thrust are C~-C d and C r These are given in Fig. 4.3a 
for AI and AII and in Fig. 4.3b for BI, BII and BIII, fl ranges from 0 ° to 45 °. 

For fin A as well as fin B the values of C~-Cn for representation I are at most 1% lower 
than those for representation II. Therefore the graphs of AI and BI are omitted. 

5. Thrust  production with and without opt imized underwater ship 

First we derive the optimum thrust for an underwater ship of given planform coupled with 
optimum sails (see Fig. 2.1). The balance equations for sideforce and moment are found 
from (3,1), (3.4) and (4.1): 

a 2 a2 a COS 2 fl = ½pwV21w2cly cos I fl, --fllP U l I10  

//2pa U2la3Ilia cos fl - ½pwV21w3cj cos fl + pWV2lW3m(fl) = O. 
(5.1) 

Because of the definition of ), (Fig. 2.1) the angle of incidence of the underwater ship when 
heeling is y cos ft. Now #1 and #2 are known and can be inserted in the formula for the thrust 
(3.5). We find a quadratic function of 7: 

~- C 2 T lpwV21w2[Ci + C27 + 37 ], (5.2) 

where C1, C 2 and C 3 still are functions of heeling angle, gap between sails and water surface 
and ~ (the angle between the yacht's course and the apparent wind). For fixed ~, fl and gap 
the maximum value of T is 

1 . 2 .2F~  C2]  (5.3) 
Tmax=~P V I  Lt.1 ¼C3 

which value is obtained for y equal to 

1 C2 (5.4) 
~ - 2  C3-  

For a given ct and gap we can find by numerical methods the angle of heel which gives 
maximum thrust. 

The formula for the thrust when also the underwater ship has optimum circulation 
distribution is given in (3.6). 
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The relevant parameters of the keel and fin of the yacht under consideration are already 

given in Section 4. Furthermore we need to know: 
spanwise length of the sails = l" = 12 m, 
righting moment = p'V21W~m(fl) = 3400 sin fl kgm, 
apparent windspeed = U = 12 m/s, 
yacht's speed = V = 3 m/s, 
gap between foresail and deck = 1~o of I a = 12 cm. 

In Fig. 5.1a we give the optimum thrust (formula 3.6) and the thrust computed for All  
(formula 5.3) as a function of ~ (the angle between relative wind and ship's course). The 
values for AI are at most 1~ smaller than for All. Fig. 5.1b shows the graphs of the 
optimum thrust and the driving force of BII and Bill .  Again the thrust of BI differs not 
more than 1~ from that of BII. 

The thrust T is given in kilograms, angles are given in degrees. 

In Fig. 5.2 we give two typical graphs of the heeling angles fl for which the maximum 
thrust is obtained. 

Two graphs of the angles of incidence of the underwater ship y, giving maximum thrust 
(formula 5.3) are given in Fig. 5.3. 

T /. 

,o! .~ 

oL ~b 
a) fin A 

~6 

7" , ,  ;o / 

o I""- ~b tb ~6 

b) fin B 

Fig. 5.1. The o p t i m u m  thrus t  o f A l I ,  B I I  and  BIII .  

. . . . .  : opt imal ,  : repr. II,  - . . . . . . .  : repr. III.  

~c 

30 / / ~ f 

Jo I 

o ,b 2h 3~ ~b 

Fig. 5.2. Heel ing  angles  g iving m a x i m u m  thrust .  

. . . .  : op t imum,  : B i l l .  

o *b 

Fig. 5.3. Angles  of incidence giving m a x i m u m  thrust.  

. . . .  : B i l l ,  -: AII .  
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6. Discussion of the results 

The mathematical model used here is rather crude: the water surface is rigid and flat, the 
velocities of wind and water are uniform, the hull is infinitesimally thin and the gap between 
sails and deck is located at the water surface. However, within this model we use a consistent 
linearized theory. 

As remarked in Section 5 the difference in maximum thrust calculated for fin A with the 
two hull representations I and II is less than 1~o. The difference in maximum thrust for AII 
and an optimum fin increases until 4~  for ~ = 35 °. 

BI and BII also give practically the same maximum thrust. Here the difference in thrust 
between BII and an optimum underwater ship increases until 6.5~ for ~ = 35 °. The 
calculated maximum thrust for BIII differs at most 10~ from the optimum one. It can be 
expected that the active part of the hull is larger than that taken into account in BIII, so BI 
or BII may be preferred above BIII. 

Although it is doubtful whether the same hull representations have the same validity for 
fin B as for fin A, we find that AI and AII are systematically about 2.5~ better than BI and 
BII. 

There is a tendency (as shown in Fig. 5.2) that fin-hull representations giving a higher 
driving force also need a larger heeling angle fl for which this thrust is obtained. The 
optimum angle of incidence 7 increases when the part of the hull taken into account becomes 
smaller. 
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